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Singularities at a dense set of temperature singularities in the Husimi tree

A. E. Alahverdian, N. S. Ananikian,* and S. K. Dallakian†
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~Received 31 March 1997; revised manuscript received 16 July 1997!

Complex temperature singularities of the three-site interacting Ising model on the Husimi tree have been
investigated in the presence of magnetic field. At definite values of magnetic field these singularities were
shown to lie at a dense set touching the real axis and as a consequence condensation of critical points took
place.@S1063-651X~97!11911-0#

PACS number~s!: 05.45.1b, 05.50.1q, 64.60.Ak
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The Ising model with multisite interactions plays an im
portant role in investigations of real physical systems. A
cent study of the model on a Husimi tree yielded a qual
tively better approximation for ferromagnetic pha
diagrams than those resulting from conventional mean-fi
theories for multisite interactions@1#. The change of sign o
the three-site coupling constant on the Husimi tree creat
drastically different situation, much more so than in the tw
site interaction ferromagnetic case. The results for the m
netization obtained at certain values of the interaction c
stant involve period doubling, chaos, etc., and as
consequence a large variety of phase transitions takes p

In this paper we investigate Fisher’s zeroes of partit
function of three-site interacting Ising model on the Husi
tree @1,2# in the presence of magnetic field and show tha
certain values of the magnetic field these singularities lie
dense set. The Husimi tree is characterized byg, the number
of triangles that go out from each site and byn, the number
of generations. The three-site interacting Ising model in
magnetic field is defined by the Hamiltonian

H52J38(
n

s is jsk2h8(
i

s i , ~1!

wheres i takes values61, the first sum goes over all trian
gular faces of the Husimi tree and the second over all si
whereJ35bJ38, h5bh8, b51/kT, and J8 is the three-site
coupling strength,h8 is the external magnetic field,T is the
temperature of the system. Note that the solution of
three-site interacting Ising model on the triangular lattice
the absence of magnetic field may be obtained by mapp
the model to the solvable case of the eight-vertex mode
the Kagome´ lattice @4#.

When the Husimi tree is cut apart at the base site, it se
rates intog identical branches. The partition function can
written as follows:

Zn5 (
$s0%

exp$hs0%@gn~s0!#g, ~2!
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wheres0 are spins of base site,n is the number of genera
tions (n→` corresponds to the thermodynamic limit!. Each
branch, in turn, can be cut along any site of the first gene
tion, which is nearest to the central site. The expression
gn(s0) can therefore be rewritten in the form

gn~s0!5 (
$s1%

expH J3s0s1
~1!s1

~2!1h (
j 51,2

s1
~ j !J

3@gn21~s1
~1!!#g21@gn21~s1

~2!!#g21. ~3!

We introduce the following variable:

xn5
gn~1 !

gn~2 !
. ~4!

For xn we can then obtain the recursion relation

xn5 f ~xn21!, f ~x!5
zm2x2~g21!12mxg211z

m2x2~g21!12zmxg2111
, ~5!

wherez5e2J3, m5e2h, and 0<xn<1. The functionf (x) is
unimodal: it is continuously differentiable, and has o
maximumx* in @0,1#. Note thatf (x* )51 for anyg, h, and
T. This function is nonhyperbolic~hyperbolicity for one-
dimensional maps means that 1,u f 8u,` in all points! and
maps the interval@0,1# onto @z,1#.

Through xn , obtained by Eq.~5!, one can express th
magnetization of the central base site:

mn5^s0&5
mxn

g21

mxn
g11

, ~6!

The diagram of the three-site interacting Ising model
mains unchanged whenJ→2J, h→2h, because Hamil-
tonian ~1! involves even terms ins. Therefore we will con-
sider h>0. It is noteworthy that in the multisite interactio
model the Lee-Yang theorem@11# is irrelevant and the phas
transition may occur athÞ0. At J.0 the investigation of
the three-site interacting Ising model on the Husimi tr
shows good agreement@1# with the phase transition line ob
tained from self-duality,whereas the conventional mean fi
approximation fails at low temperatures, but atJ,0 in the
sufficiently low kT limit this model shows very unusual be
2452 © 1998 The American Physical Society
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57 2453BRIEF REPORTS
havior, i.e., there takes place a cascade of phase transi
according to the Feigenbaum scheme, Fig. 1. This beha
is a consequence of the fact that attractors of the map~5!
have complicated geometrical and dynamical dependenc
the values ofh andT . In the chaotic region the magnetiza
tion is no longer an order parameter and to characterize
three-site interacting Ising model in the chaotic region o
should consider the generalized dimensionsDq @5# or
Lyapunov exponentsl as the order parameters. For comp
tation of Dq or l the thermodynamic formalism of the mu
tifractal has been developed@6–8#. In many dynamical sys-
tems Dq or l exhibits nonanalytic behavior that can b
interpreted as a phase transition by mapping the prob
onto thermodynamics of one-dimensional spin mod
@9,10#. We recently described the chaotic properties of
three-site interacting Ising model in terms of multifracta
and investigated the nonanalytic behavior ofl in the fully
developed chaotic region@2,3#.

The advantage of Husimi or Bethe-like lattices consists
the fact that they allow one to investigate the behavior
magnetization with the complete set of parameters. T
knowledge of the behavior at fixed values ofT andh from
Eq. ~5! would enable the phase structure of the three-
interacting Ising model to be investigated. The informati
concerning the phase structure, and, in the particular, p
sible phase transitions for physical values of parameters
be extracted from the behavior of the partition function in t
complex plane. The Yang-Lee edge singularity@11# is one
example of this, the prediction of the distribution of partitio
function zeroes in the complex temperature plane is ano
@12#. It was demonstrated that these beautiful results can
of practical use in the study of phase transitions@13–15#.

The phase transition point of the three-site interact
Ising model in the complex plane may be obtained from

mxn
g1150, ~7!

which expresses the equality of the partition function to ze
Thus, in the thermodynamic limit this condition can b
checked on the attractor of the complex map~5!. In nonan-
lytical points this condition gives an unconventional beha
ior of the magnetization (m). We point out that for real val-

FIG. 1. Plot ofm, magnetization, vsh8, external magnetic field
(kT51,J8521, g 5 3!.
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ues of parameters the partition function is not equal to z
and the magnetization is not equal to infinity, but if the z
roes of the partition function touch the real axis at so
points one can conclude that these are the phase trans
points ~nonanalytical points of the free energy! .

We verify Eq. ~7! on the attractor of the map~5!. As an
initial condition for the map we takex051 ~free boundary
condition! and for investigation of the attractor’s behavi
we taken5105;106 iterations. Thus we require Eq.~7! for
at least onexn of the attractor. The resulting diagrams a
shown in Figs. 2 and 3. Our results are stable with respec
the variation ofn. In these pictures we draw only the upp
part of the complex plane because the partition function
the three-site interacting Ising model hasT→eipT symme-
try. One can see that the partition function zeroes lie o
fractal set. The dense region clearly indicates the phase t
sition condensation. This region disappears at sufficien
high and low external magnetic fieldsh. The frustration of
the three-site interaction on a triangle is the main reason
such condensation. Note that the phase structure of the
site magnetization is slightly different because the Hus
tree is not translation invariant.

A typical example of the condensation of critical points
the Griffiths singularities in the diluted Ising model@16# .
The randomness of the interaction constant~or of external

FIG. 2. Complex temperature phase diagram (h853, J8521,
g 5 3!.

FIG. 3. Complex temperature phase diagram (h853, J8521,
g 5 4!.
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field! gives rise to Griffiths singularities at some speci
temperatures, where in the macroscopic region the syste
strongly correlated. The frustration in the three-site inter
ing Ising model on the Husimi tree causes the appearanc
nontrivial thermodynamics and as a consequence in s
temperature ranges a different limiting behavior for the m
netization takes place. This fact becomes more impor
when the condensation of critical points takes place. We
lieve that the investigation of the recursion relations in ter
of multifractal can give us a deeper understanding of
nature of the condensation of critical points.
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In summary, we have shown the condensation of criti
points in the three-site interacting Ising model on the Hus
tree in the presence of magnetic field. Such behavior of
phase structure is typical for the disordered system obta
here without randomness.

This work was partly supported by Grant-211-5291 Y
of the German Bundesministerium fur Forshung and Te
nologie and by the Grant INTAS-96-690.
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